


B2 Platform – Autonomy

Communication Capabilities: B2 can connect to cloud services for remote 
operations, system upgrades, and communication with the app and web 
front-end. 

Sensor Integration: B2 collects sensor data such as motor and radar information, 
which can be crucial for navigation and obstacle detection in a large open area.

SLAM Services: B2 supports SLAM services for mapping, location, and navigation. 
This feature enables the robot to create maps of its environment, determine its 
position, and autonomously plan paths to navigate through the area.

Topology Navigation: B2 can utilize topology maps for navigation, allowing it to 
understand the layout of the environment and plan its movements accordingly.

Obstacle Crossing Abilities: B2 has strong obstacle-crossing capabilities, 
including climbing stairs, which can be beneficial for patrolling different terrains in 
a large open area.

Autonomous Control: B2’s WebRTC module facilitates data traffic with the app, 
enabling control commands to be issued remotely, supporting semi-autonomous 
operation.

Development Interfaces: B2 supports development interfaces like DDS and ROS2, 
providing flexibility for developers to customize and enhance its capabilities for 
unique tasks.

B2 can be deployed in a semi-autonomous state for patrolling a large open area. The B2 robot is equipped 
with various advanced features and capabilities that make it suitable for such tasks.



B2 Platform - SLAM

1. Mapping: The mapping module is used to obtain feature information such as 
corner and face features in the current environment. It generates a current 
environment map for relocation. This process involves converting motion data 
into standard Odom and IMU data, obtaining point cloud data from LiDAR, 
loading marked navigation points, and controlling the robot to reach the 
designated target endpoint.

2. Positioning: The positioning module is based on the map generated by the 
mapping module. It combines the perception of the current sensor to 
determine the robot’s pose in the current environment. The process involves 
obtaining motion data and LiDAR data, providing an initial pose for the robot, 
and matching perception data with the map to calculate the pose result. This 
provides position feedback and information for navigation. 

3. Navigation: The navigation module automatically plans the path to the target 
point based on the positioning results and the deviation from the target point. 
It allows the robot to autonomously move to the target point by following the 
planned path. The process involves using the positioning results and marked 
topology points to guide the robot’s motion towards the target point.

SLAM (Simultaneous Localization and Mapping) Services are divided into three main parts.

source

https://www.linkedin.com/pulse/simultaneous-localization-mapping-slam-introduction-juan-wee/


B2 Platform - Topology Navigation

1. Establishing a Topology Map: By creating a topology map, robots gain an 
understanding of the environment’s layout and connection relationships. This 
enables them to conduct navigation and path planning effectively.

2. Understanding Location Layout: Robots use the topology map to comprehend 
the location layout and connection relationships in the environment. This 
understanding helps in navigating and planning paths efficiently.

3. Navigation and Path Planning: Robots select appropriate paths for movement 
based on the nodes and edges between their current position and the target 
position. This process involves autonomously planning motion based on the 
deviation between the robot’s position and the target point, ensuring safe 
movement towards the target.
Edges can be bidirectional or unidirectional, depending on navigation 
limitations and robot capabilities. Additionally, edges may have weights 
representing distance or cost, aiding in path planning and navigation decisions.

4. Choosing Paths: Robots can navigate to specific topology nodes, with the edge 
between the current position and the target node highlighted in red. This 
indicates that the robot is moving along the selected edge towards the target 
node. During movement, the robot’s gait, speed, and other parameters are 
constrained by the corresponding edges.

Topology Navigation involves creating a map that consists of nodes and edges. Nodes represent key 
locations in the environment, while edges represent the connections between nodes, indicating the paths 
that robots can move along.



Architectural Overview (H1 Example)

The Unitree Explorer App uses a WebRTC 
based module to facilitate key data 
exchange, managing streams for audio, 
video, radar data, motion status, and 
control commands, allowing for real-time 
interaction and feedback. 

H1 includes three built-in computing 
units:

● PC1 is dedicated exclusively to Unitree’s 
motion control programs and is 
restricted from public access.

● PC2 and PC3 are available for 
secondary development, allowing 
external developers to implement 
custom applications or modifications.

DDS Middleware acts as the main communication layer between modules, compatible 
with ROS2 for extended development flexibility (developers must choose the 
appropriate RMW for ROS2 compatibility). EDU users can access interfaces via either 
DDS or ROS2.

H1's data communication system uses DDS 
(Data Distribution Service) as the core 
middleware, handling data flows via two 
primary patterns: Subscription/Publish and 
Request/Response.

This approach balances continuous data flow 
needs with on-demand requests, improving 
system flexibility and usability.



Control SDK Overview

The Data communication system uses DDS (Data Distribution Service) as the core 
middleware, handling data flows via two primary patterns: Subscription/Publish and 
Request/Response.

1. Subscription/Publish: Here, data is streamed from the sender to subscribers, 
fitting well with high-frequency, continuous updates. This pattern is ideal for 
scenarios where data needs to be constantly refreshed across multiple receivers.

2. Request/Response: Designed for on-demand data retrieval, this pattern supports 
lower-frequency, event-based interactions. It operates like a Q&A, suitable for 
specific data requests or functional changes.

For implementation, two main methods are outlined:

1. API Call: Resembling REST APIs, requests are broadcasted and paired with 
responses using unique identifiers (UUIDs) to maintain correct request-response 
matching.

2. Functional Call: A simplified API wrapper, offering function-like syntax for easier 
access and usability, especially for frequent interactions.

This approach balances continuous data flow needs with on-demand requests, 
improving system flexibility and usability.



Deploy Custom Code with DDS and ROS2

1. Network Configuration: Ensure that the devices are connected to the same local 
network. Modify the IP addresses of the devices if necessary to ensure proper 
communication.

2. Accessing the Docking PC: Connect to the docking PC using SSH with the default 
password. Select the ROS2 environment on the docking PC.

3. Checking DDS Configuration: Verify the network card parameters and the network 
card with the correct IP address on the docking PC. Check the ifconfig output to 
confirm the IP address.

4. Checking Data Communication: Use the ROS2 topic list command to view the 
message topics being sent by the robot’s main PC. This confirms that data 
communication is functioning correctly.

5. Custom Message Format: Define custom message formats using IDL files. These 
files specify the structure of the messages exchanged between different 
components of the system. Examples include defining node information, edge 
information, and unique identifiers for instructions.

6. Developing Custom Code: Write custom code that subscribes to or publishes 
custom messages using the defined message formats. This code can interact with 
the SLAM and navigation services by sending or receiving relevant instructions and 
data.

7. Compiling and Running Custom Code: Compile the custom code using the 
necessary dependencies and tools provided by the Unitree ROS2 package. Run the 
custom code on the docking PC to interact with the SLAM and navigation services.

Unitree Development Resources

https://github.com/unitreerobotics



